
A Proposed Plan Execution Architecture for Advanced Life Support

System Control

G. Biswas1, P. Bonasso2, S. Abdelwahed1, E.J. Manders1, D. Kortenkamp2, J. Wu1, and S. Bell2

1Dept. of EECS & ISIS, Vanderbilt University, Nashville, TN;

2NASA Johnson Space Center/ER2, Houston TX.

Advanced life support (ALS) systems require complex
control strategies that can maintain stable system
performance and balanced resources with small margins
and minimal buffers. In closed-loop life support systems
there are complex interactions between sub-systems such
as air, water, food production, solids processing, and the
crew. Recent research at NASA Johnson Space Center has
led to significant insights into autonomous control of ALS
systems [Leon et al 1997; Kortenkamp et al 2001;
Schreckenghost et al 2002]. Routine control of an ALS
system is well within the reach of current techniques. For
example, the autonomous control system described in
[Schreckenghost et al 1998] operated around the clock for
73 straight days during a 90 day crewed test with minimal
human intervention and the autonomous control system for
a recent test of an advanced water recovery system
operated with minimal human intervention for over
eighteen months[Bonasso et al 2002]. However, these
control systems are not able to deal convincingly with the
concurrent and interacting control of several subsystems, to
coordinate the effective and efficient long term
management of resources with the planning of mission
activities, and to demonstrate effective recovery from
significant anomalies. A solution to these issues is needed
in order to demonstrate life support systems amenable to
efficient long-duration missions such as the human
exploration of Mars.

In this paper, we present a proposed multi-level
computational architecture that integrates planning and
hierarchical control schemes to develop a dynamic
planning and control system that is reactive and fault-
adaptive, but at the same time, is designed to manage
resources for the duration of a long mission. The
computational architecture adopts a novel approach to
integrating components of the 3T control architecture
developed at NASA JSC and Metrica [Bonasso et al 1997]
with the hierarchical model-based multi-level control
systems that have been developed at Vanderbilt University
[Abdelwahed et al 2005]. Neither 3T nor the multi-level

model-based control architecture alone present the
complete solution for long-duration autonomous
operations. The former lacks the dynamic models
necessary to make efficient coordinated use of scarce
resources and to maintain smooth transitions among
controller states at finer granularity time scales, while the
latter lacks domain procedural knowledge to understand
the relations between mission goals and planned activities,
and to allow the execution of specialized activities, such as
maintenance and fault-recovery. Further, it is much harder
to provide meaningful interfaces to the user through the
control systems.

This integrated computational architecture combines the
best of these two approaches. Our general design uses the
dynamic models of model-based control architecture to
inform the state-based procedural schemas during plan
development and execution, as well as to carry out the
dynamic control of the habitat subsystems. The 3T planner
will provide overarching mission plans, while the 3T
sequencer can instantiate procedures that would
significantly increase the computational complexity
associated with system analysis and decision making with
the model-based control architecture.

The 3T planning module drives the supervisory control
scheme. Given a top-level goal, such as “conduct habitat
operations while supporting extravehicular activities
(EVA)”, the planner automatically generates a habitat plan
for a given duration. The planner reasons in depth about
goals, resources and sequencing constraints. It integrates
mission goals with a priori knowledge, such as the crew
schedule, EVA schedule, crop plantings and harvesting,
and resource constraints. This knowledge is stored in the
world model. During plan generation, the 3T planner draws
from the task-resource consumption model of the Resource
Manager (middle level), to take into account the dynamic
effects of planning decisions. The resulting plan steps and
ordering will be tailored to make the best use of scarce
resources. Using the user interface capabilities of the

planner, the plan can be reviewed by mission control
operators and the habitat crew before going into effect.

The middle level of our combined architecture consists of
the 3T sequencer working in concert with the model-based
supervisory controller. To execute the plan, the planner
passes the next step in the plan for each area of the habitat
to the 3T sequencer, which decomposes the plan step into
RAPs that are further decomposed until the final sequences
are at the level of the system controllers in the third level
of the architecture, e.g., the Water Recovery System
(WRS) or the crop chambers. An example sequence for the
Air Revitalization System (ARS) was given in the previous
section. A sequence to sustain crop growth might be 1)
harvest a wheat crop, 2) harvest a soybean crop, 3) plant a
soybean crop, 4) and harvest a salad crop. The selection of
RAPs from the RAP library will be guided by dynamic
constraints provided by the models in the model based
supervisor also in the middle layer. The resulting
sequences are then passed to the supervisory controller
through the model information interface, which uses them
as ordering constraints; e.g., the supervisor may force the
ordering of a set of parallel tasks to ensure that required
resources will be produced while not violating energy
constraints, or it may adjust the duration of one of the steps
as in the previous scenario. Using resource constraints, the
supervisory controller transforms the sequence into a
schedule of control specifications for the system level
controllers, which then carry out the execution sequence
for their respective systems (e.g., Air Revitalization (ARS)
and Water Recovery (WRS)). Mission controllers and the
crew have access to the state of the executing procedures
via the system state information access module. This is
especially needed when the crew carries out maintenance
and ad hoc procedures that do not follow nominal
operating schemes.

The system level controllers see each system as an input-
output module, where material and energy are input to the
system with the goal of producing desired states within the
system and output that can be expressed in terms of
material, energy, and performance quality parameters. The
input-output mappings created by these controllers define
utility-based multi-criterion objective functions that the
lowest-level subsystem controllers employ to optimize
dynamic behavior of subsystems in a way that they
minimize the use of resources, while producing the
necessary output. For example, given the levels of gases
and the amount of energy available to the ARS during the
above example sequence period, the system controller for
the ARS will regulate the CO2 and O2 stores to maximize
the CO2 consumption to support the incineration
operations.

Results of the execution from the system controllers are
aggregated from the subsystem controllers in the bottom

later and provided to the supervisor. In our current
architecture, the subsystem controllers are designed to
maintain set point control, i.e., maintain the operating
region of their respective subsystems at levels and
operating modes specified by the system controllers. The
supervisor will update its dynamic models as well as pass
the execution results to the sequencer as a set of execution
states. The RAPS interpreter has the capability to
determine new task sequences when faults occur in the
system or in the face of unsuccessful execution of task
steps. As RAPs sequences complete, the interpreter
informs the planner which will update the plan and pass
down the next plan step to be executed. Such an update
may simply change start and stop times of steps while
maintaining the original ordering. If the RAPs interpreter
reports a failure of a plan step, as in the case of the faulty
CDRA above, the planner may replan the mission steps,
adding or omitting steps depending on the effect of the
failed step on the overall mission objectives. As in plan
generation, the task resource models of the supervisory
controller will inform the replanning. As well, users will
be able to modify the plan at their discretion as the crew
did in the above scenario by requiring that the EVA take
place as originally scheduled.

The principle of “cognizant failure” is still embodied in
each level of the architecture. The system controllers
provide robust regulation of the habitat subsystems,
notifying the middle layer of any failing processes. The
supervisory controller dynamically adjusts control
schedules as the situation changes, informing the sequencer
as to the state of tasks. The sequencer in turn serves as the
mechanism to invoke alternate procedures as well as fault
recovery procedures. Equally important, in light of severe
failure, the sequencer will invoke “safing” procedures for
the habitat subsystems, informing the planner which in turn
will carry out replanning.

Additionally, the user has access to the levels of control
where the aggregate of information and control stratagems
is meaningful, and yet the complex details of such things
as multi-criterion objectives functions remain hidden.

Scenario

We illustrate our proposed architecture through an example
scenario. We begin with the assumption of a ninety-day
mission plan that is scheduled in 28-day segments. Within
the first 28-day period, the mission goal for the habitat
might be “to conduct habitat operations while supporting
an extravehicular activity (EVA) on day eighteen”. An
automated planning capability produces a plan of operation
that includes tasks to maintain and operate the habitat,
operate the water recovery system (WRS), air revitalization
system (ARS) and crew quarters climate control, support

the required EVA, sustain crop growth, and ensure safe
disposal of solid waste. Using resource models of the
dynamics of the habitat subsystems the plan will make
efficient use of power, air and water stores and habitat
inventories.

Next, a reactive planning capability selects routine
procedures for carrying out the first step of each part of the
plan for each subsystem. For example, for the ARS:
1) Seven days of nominal operations.
2) Four days in high CO2 consumption state to clear CO2

reservoirs in preparation for incineration operations,
3) Four days in an extreme high CO2 state to scrub the

CO2 resulting from incineration,
4) One day providing O2 to tanks to be used for the

upcoming 24 hour EVA on day eighteen, and
5) Resume nominal operations on day ten.
This sequence is then passed to a dynamic control
execution capability that examines the existing resources
for the ARS and suggests an extra day to ensure the O2
tank level increases above a pre-determined value (say 10
kg). Since the extra day will still support the EVA on day
eleven, the reactive planner makes no further changes to
the ARS execution plan. The dynamic control executive
issues time-ordered control specifications for all the habitat
systems (WRS, ARS, Power generation, Biomass, etc.) and
their corresponding subsystems commensurate with the
procedures (i.e., partial plan sequences) from the reactive
planner. The subsystem controllers execute the directives
“optimally” taking into account the continuous dynamics
of the respective subsystem for the first nine days. For
example, a change detection algorithm might notice an
increase in power usage in the CO2 removal system
(CDRA), but its subsystem controller is able to compensate
the increase by decreasing the heater temperature a little,
and also adjusting blower and pump speeds.

On day ten, however, the dynamic control executive
determines that the CDRA behavior has continued to drift
away from the nominal, and the system is operating sub-
optimally. By now, the fault detection module has reliably
established that there is a restriction in the CO2 output line
and also a leak is detected in the desiccant bed. The
system controller has adjusted for this by reducing Oxygen
Generation Assembly (OGA) and CO2 Reduction System
(CRS) (Sabatier) operating times, but if this trend
continues, air quality in the crew chamber will start
dropping below acceptable levels, or lot more energy will
have to be directed toward the CDRA. With the night
period approaching, this is not considered a good option
(by the supervisory control predictor). This situation is
reported by the supervisory controller to the RAPS
(reactive planner) unit. This unit (the Sequencer) is told
that it will now take five days to clear the CO2 reservoirs.

The reactive planner can make no adjustment that will
compensate for the extra day and informs the planner. The
planner sees the situation and determines there are options
at this time such as (i) perform a CDRA repair and, (ii)
drop the scheduled EVA activity.

The habitat planner considers the situation, and through its
own analysis using its world model determines that a new
plan that includes a two-day crew task for repair of the
CDRA, which will create an O2-restricted situation for a
few days. As a result, the EVA activity is pushed back to
day twenty, since one of the crew repairing the CDRA is
also needed for the EVA. Furthermore, the astronauts are
required to be cautious while exercising, e.g., none of the
crew should exercise at the same time.

At this stage, using an interface to the planner, the habitat
commander informs the planner that the EVA task cannot
be slipped because it involves a communications
experiment that depends on the relative orbits of the moon
and the earth about the sun, a constraint unknown to the
habitat planner. The planner, in further conference with
the model-based resource manager, determines that if the
crew completely omits their exercise period until after the
EVA, the ARS can meet the incinerator and EVA
requirements. The resulting habitat plan omits crew
exercise from the crew plan and schedules the CDRA
repair after the EVA.

When the CDRA repair takes place, the reactive planner
will select an appropriate repair procedure for the crew and
a set of modes for ARS and other affected subsystems, and
the dynamic controller will execute these changes
efficiently. For example, oxygen generation may be
suspended, thus reducing the water requirement from the
WRS during the repair period. As well, during the repair,
the reactive planner will serve as the subsystem level
interface to the dynamic controller.

When the repair is complete, the dynamic controller will
verify the normal operation of the CDRA and inform the
reactive planner, which in turn informs the habitat planner.
The habitat planner will adjust the inventory of materials
used in the repair and replan if necessary.

A key observation from this scenario is that once
anomalous situations are detected, mechanisms kick in at
different levels to attempt to contain and compensate for
the fault, without having to sacrifice mission goals. For
less critical faults of small magnitude, the subsystem
controllers can compensate for the change in behavior. At
the next level, the system controller may redistribute
resources or, if possible reassign some tasks, to keep the
system performance and output at different levels. Then
the supervisory controller jumps in to determine if it can
impose non-critical restrictions to avoid over draining of

resources or reduction in effort without significant loss of
capabilities. If the problems persist, the reactive planner or
the replanner may be invoked to determine new plans.
Last, mission control or the crew may want to change some
of the mission goals to avoid potential problems. In all of
these situations, decisions made at the top take precedence,
which imply that the lower level units, especially the
lower-level controllers have to change their strategy to
satisfy the new requirements.

References

Abdelwahed, S., J. Wu, G. Biswas, J. Ramirez and E. J. Manders,
“Online Fault Adaptive Control for Efficient Resource
Management in Advanced Life Support Systems,” Habitation:
International Journal for Human Support Research, Vol. 10, No.
2, pp. 105-116, 2005.

Bonasso, R.P., R. J. Firby, E. Gat, D. Kortenkamp, D. Miller and
M. Slack, “Experiences with an Architecture for Intelligent,
Reactive Agents,” Journal of Experimental and Theoretical
Artificial Intelligence, Vol. 9, No. 1, 1997.

Bonasso, R. P., David Kortenkamp and Carroll Thronesbery,
Intelligent Control of a Water Recovery System. In AI Magazine,
Vol. 24, No. 1, Spring 2003.

Kortenkamp, D., R. Peter Bonasso and Devika Subramanian,
“Distributed, Autonomous Control of Space Habitats,” IEEE
Aerospace Conference, 2001.

Leon, J., David Kortenkamp and Debra Schreckenghost, “A
Planning, Scheduling and Control Architecture for Advanced Life
Support Systems,” Proceedings of the NASA Workshop on
Planning and Scheduling in Space, 1997.

Schreckenghost, Debra, Mary Beth Edeen, R. Peter Bonasso, and
Jon Erickson, “Intelligent Control of the Product Gas Transfer for
Air Revitalization,” Proceedings of the 28th Conference on
Environmental Systems, 1998.

Schreckenghost, Debra, Carroll Thronesbery, R. Peter Bonasso,
David Kortenkamp and Cheryl Martin, “Intelligent Control of
Life Support for Space Missions,” in IEEE Intelligent Systems
Magazine, Vol. 17, No. 5, September/October 2002.

